US009208077B1

a2 United States Patent

Ma et al.

US 9,208,077 B1
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

FORCED MAP ENTRY FLUSH TO PREVENT
RETURN OF OLD DATA

Applicant: LSI Corporation, San Jose, CA (US)

Inventors: Li Zhao Ma, Shanghai (CN); Rong
Yuan, Shanghai (CN); Peng Xu,
Shanghai (CN)

Assignee: Avago Technologies General IP

(Singapore) Pte. Ltd., Singapore (SG)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 69 days.

Appl. No.: 14/291,127

Filed: May 30, 2014

Int. Cl.

GO6F 12/02 (2006.01)

GO6F 11/14 (2006.01)

GO6F 11/10 (2006.01)

U.S. CL

CPC ... GOG6F 12/0246 (2013.01); GO6F 11/1072

(2013.01); GO6F 11/1402 (2013.01); GO6F
11/1446 (2013.01); GO6F 11/1471 (2013.01);
GO6F 2212/7201 (2013.01)

Field of Classification Search
CPC GOGF 12/0246; GOGF 11/1402; GOGF
11/1446; GOGF 11/1072; GOG6F 11/1471;
GOGF 2212/7201
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,484,533 B2 7/2013 Olbrich et al.

8,539,311 B2 9/2013 Steiner et al.
2009/0307413 Al* 12/2009 Chuccceeen. GOGF 12/0246
711/103
2010/0169541 Al* 7/2010 Freikorn GOGF 12/0246
711/103
2014/0075252 Al* 3/2014 Luo ..ccccoevvveeee G11C 11/5635
714/721

2014/0082261 Al 3/2014 Cohen et al.
2015/0098271 Al* 4/2015 Lasser G11C 7/1006
365/185.11
2015/0143185 Al* 5/2015 Motwani GOGF 11/1068
714/718
2015/0178149 Al* 6/2015 Cai ..cccocovveveennn GOGF 11/1044
714/766
2015/0199149 Al* 7/2015 Sankaranarayanan GOGF 3/0653

711/102
* cited by examiner

Primary Examiner — Hiep Nguyen
(74) Attorney, Agent, or Firm — Suiter Swantz pc llo

57 ABSTRACT

A data storage device flushes newly written data in response
to certain events such that, when the device has acknowledged
newly written data, the device cannot return old data of the
referenced logical block address to the host in any case. If the
data of the logical block address has been corrupted, the
device returns an uncorrectable error, not old data. A “force
map entry flush” flushes modified map entries to NAND
when an upper page is programmed. After a power failure and
restoration, a storage device is able to analysis map entries to
determine whether there is some host data in the uncorrect-
able die, then prevent return of old data to a host.

20 Claims, 5 Drawing Sheets

400

402

404

406

Y by

408

\

410

\

412

\'

41

4

\

416

\

418

\

420

\

422

\

442

446

4438

450

152

\

/

/

\

\

A\

/

\\456 \

/
A

| 424 | 426 [428 | 430 | 432 | 434 | 436 | 438 |

U.S. Patent Dec. 8, 2015 Sheet 1 of 5 US 9,208,077 B1
100
PROCESSOR P~
104
102
DATA MEMORY ¥~
FIG. 1
200 A LBA X TIMESTAMP N N2 PAGE A ~C
204~ LBAY TIMESTAMP N + 1 N29° PAGE B ~U
208 A LBA Z TIMESTAMP N + 2 NZ10 paGE € ~28
200~ LBA X TIMESTAMP N + 3 NZ1* PAGE D ~C
204~ LBAY TIMESTAMP N + 4 N218 pacGEE ~F
208~ LBA Z TIMESTAMP N + 5 NZ5% PAGE F ~*

FIG. 2

U.S. Patent Dec. 8, 2015 Sheet 2 of 5 US 9,208,077 B1
W~ IRAXRAPEDTO TIMESTAMP N (<%
P4~ 1BA YPA:éFE’PBED 0 TIMESTAMPN + 1 (=%
08 LBA ZP%EPCED 0 TIMESTAMPN + 2 [~
02 RA XP%FE)PDED 0 TIMESTAMP N +3 (<1
6~ LBA YP%EPEED 0 TIMESTAMP N + 4 (<18
RO~ AZIAEREDTO TIMESTAMP N +5 [~ %

FIG. 3

US 9,208,077 B1

Sheet 3 of 5

Dec. 8, 2015

U.S. Patent

¥ "Old

14514

[4°14

8

P44

1444

(4244

0] 47

J

[A44

J

()44

J

81y

J

91y

J

1414

J

(424

J

Oly

J

801

YAAS

90y

14414

oy

oov

U.S. Patent

Dec. 8, 2015

Sheet 4 of 5

SEARCH HOST DATA

AREA N\
IDENTIFY CORRUPT 500
PAGES N\
FIND TIMESTAMP OF 504
PREVIOUS DIE [\J
SEARCH MAP DATA 506
AREA N\
FIND MAP ENTRY

CORRESPONDING TO 508
FOUND TIMESTAMP \Z

SCAN ALL
SUBSEQUENT MAP 510
ENTRIES S

ADD FLAG TO ALL
SUBSEQUENT LOGICAL
BLOCK ADDRESSES
CORRESPONDING TO
CORRUPTED PAGES

512

FIG. 5

US 9,208,077 B1

U.S. Patent Dec. 8, 2015 Sheet 5 of 5

SEARCH FOR MAP
ENTRY OF LBA

"\690

IDENTIFY CORRUPT
FLAG ASSOCIATED
WITH MAP ENTRY

’\@2

RETURN CORRUPT
STATUS

"\?94

FIG. 6

US 9,208,077 B1

US 9,208,077 B1

1
FORCED MAP ENTRY FLUSH TO PREVENT
RETURN OF OLD DATA

BACKGROUND OF THE INVENTION

Multi-level cell NAND memory can store two bits in one
cell; one upper bit and one lower bit stored in corresponding
pages, each page typically comprising eight kilobytes of data.
All lower bits in one page comprise a lower page, and all
upper bits in one page comprise an upper page. In multi-level
cell NAND memory, when an upper page is corrupted, the
lower page is also corrupted. If programming of one cell fails,
both lower bits and upper bits cannot be read out. Multi-level
cells require that the lower page must be programmed first,
and then the correspondent upper page can be programmed. If
programming the upper page fails, the corresponding lower
page will also be corrupted, and can’t be read out.

Some systems utilize memory mapping for relating logical
block addresses to multi-level cell pages when new data is
written to improve performance by preventing write opera-
tions until multiple writes can be written to multi-level cells in
abatch process. In those cases, a power failure during a write
operation could result in old data being returned after power
is restored.

Consequently, it would be advantageous if an apparatus
existed that is suitable for preventing old data from being
returned after a power failure in an efficient multi-level cell
architecture.

SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to a novel
method and apparatus for preventing old data from being
returned after a power failure in an efficient multi-level cell
architecture.

In one embodiment of the present invention, a data storage
device flushes newly written data in response to certain events
such that, when the device has acknowledged newly written
data, the device cannot return old data of the referenced
logical block address to the host in any case. If the data of the
logical block address has been corrupted, then the device
returns an uncorrectable error, not old data.

A “force map entry flush” flushes modified map entries to
NAND when an upper page is programmed. After a power
failure and restoration, a storage device is able to analysis
map entries to determine whether there is some host data in
the uncorrectable die, then prevent return of old data to a host.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the inven-
tion claimed. The accompanying drawings, which are incor-
porated in and constitute a part of the specification, illustrate
an embodiment of the invention and together with the general
description, serve to explain the principles.

BRIEF DESCRIPTION OF THE DRAWINGS

The numerous advantages of the present invention may be
better understood by those skilled in the art by reference to the
accompanying figures in which:

FIG. 1 shows a computer system suitable for implementing
embodiments of the present invention;

FIG. 2 shows a block diagram representing write opera-
tions of logical block addresses to memory device pages;

FIG. 3 shows a map of logical block addresses to memory
device pages according to at least one embodiment of the
present invention;

25

30

35

40

45

55

60

2

FIG. 4 shows ablock diagram ofa data storage element and
map entries useful in at least one embodiment of the present
invention;

FIG. 5 shows a flowchart of at least one embodiment of the
present invention;

FIG. 6 shows a flowchart of at least one embodiment of the
present invention;

DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the subject matter
disclosed, which is illustrated in the accompanying drawings.
The scope of the invention is limited only by the claims;
numerous alternatives, modifications and equivalents are
encompassed. For the purpose of clarity, technical material
that is known in the technical fields related to the embodi-
ments has not been described in detail to avoid unnecessarily
obscuring the description.

Referring to FIG. 1, a computer system suitable for imple-
menting embodiments of the present invention is shown. A
data storage device according to one embodiment of the
present invention comprises a processor 100 configured to
execute computer executable program code, a data storage
device 104 connected to the processor 100 and memory 102
connected to the processor 100 for storing a memory map.
The data storage device 104 comprises a multi-level cell
architecture and the memory map associates newly written
data, temporarily stored in the memory 102 with a logical
block address in the data storage device 104.

Referring to FIG. 2, a block diagram representing write
operations of logical block addresses to memory device pages
is shown. When a multi-level cell device receives a command
to write data to a logical block address, the device may deter-
mine, in the interest of efficiency, to postpone actually writing
the data until multiple write operations can be performed at
once.

Inone exemplary situation, when a solid-state drive powers
on, it first reads a map to determine current host data loca-
tions. After such determination, the drive can receive host
read/write commands. Consider an example where data cor-
responding to a first logical block address is written to a first
lower page. At a later time, a host writes data to the first
logical block address again, and the drive saves the data of the
first logical block address to a second lower page. In each
case, ina data storage system configured to cache write opera-
tions, the data may be cached until the host flushes the cache.
The system ensures the first logical block address has been
written to the second lower page, and returns an indication of
command success. After some time, the host continues to
write more data to the drive, and just when the drive attempts
to program an upper page corresponding to the second lower
page, a power loss causes the upper page program operation
to fail and also corrupt the second lower page. When the drive
powers on again, an attempt to read the first logical block
address will return the first lower page instead of reporting an
error status.

In at least one embodiment of the present invention, data is
written to a temporary location, possibly in a volatile
memory, then a map entry is written that indicates the logical
block address 200, 204, 208, of the new data, the intended
page 224,226, 228,230, 232, 234, and a timestamp 202, 206,
210, 214, 218, 222 corresponding to each write operation.
The map allows the device to find the physical location of any
stored data.

During each write operation, a map entry is created. A
solid-state drive according to at least one embodiment of the
present invention receives a write operation and writes the

US 9,208,077 B1

3

data along with a timestamp 202, 206, 210, 214, 218, 222 to
NAND memory. The timestamp 202, 206, 210, 214, 218, 222
is an increasing number indicating the relative time of each
write operation. In one example, a first map entry includes a
first logical block address 200, a first timestamp 202 and a
first intended page 224. In this example, the first intended
page 224 is a lower page of a particular multi-level cell. Ata
later time, a fourth map entry associated with a write opera-
tion also references the first logical block address 212, a
fourth timestamp 214 and a fourth intended page 230; the
fourth intended page 230 being an upper page associated with
the first intended page 224. Each timestamp 202, 206, 210,
214, 218, 222 allows the data storage device to correlate data
corresponding to the same logical block address 200, 204,
208 to determine the most recent data.

Referring to FIG. 3, a map of logical block addresses to
memory device pages according to at least one embodiment
of'the present invention is shown. In at least one embodiment,
a map includes a plurality of entries, each entry comprising a
data location portion 300, 304, 308, 312, 316, 320 and a
corresponding timestamp 302, 306, 310, 314, 318, 322. With
reference to FIG. 2, when a write operation writes a first
logical block 200 to a first intended page 224 at a time corre-
sponding to a first timestamp 202, a corresponding map entry
is written to random access memory in the storage device
such that a first data location entry 300 specifies a correlation
between the first logical block address 200 and the first
intended page 224, and a first timestamp 302 that corresponds
to the first timestamp 202 of the actual write operation. Like-
wise, when a write operation writes a second logical block
204 to a second intended page 226 at a time corresponding to
a second timestamp 206, a corresponding map entry is written
to random access memory in the storage device such that a
second data location entry 304 specifies a correlation between
the second logical block address 204 and the second intended
page 226, and a second timestamp 306 that corresponds to the
second timestamp 206 of the actual write operation. Further-
more, when a write operation writes a third logical block 208
to a third intended page 228 at a time corresponding to a third
timestamp 210, a corresponding map entry is written to ran-
dom access memory in the storage device such that a third
data location entry 308 specifies a correlation between the
third logical block address 208 and the third intended page
228, and a third timestamp 310 that corresponds to the third
timestamp 210 of the actual write operation. In each case, the
first intended page 224, second intended page 226 and third
intended page 228 are lower pages of multi-level cells.

At a later time, a write operation writes the first logical
block 200 to a fourth intended page 230 at a time correspond-
ing to a fourth timestamp 214, the fourth intended page 230
being an upper age corresponding to the first intended page
224. A corresponding map entry is written to random access
memory in the storage device such that a fourth data location
entry 312 specifies a correlation between the first logical
block address 200 and the fourth intended page 230, and a
fourth timestamp 314 that corresponds to the fourth times-
tamp 214 of the actual write operation. Likewise, when a
write operation writes the second logical block 204 to a fifth
intended page 232 at a time corresponding to a fifth times-
tamp 218, the fifth intended page 232 being an upper page
corresponding to the second intended page 226, a correspond-
ing map entry is written to random access memory in the
storage device such that a fifth data location entry 316 speci-
fies a correlation between the second logical block address
204 and the fifth intended page 232, and a fifth timestamp 318
that corresponds to the fifth timestamp 218 of the actual write
operation. Furthermore, when a write operation writes the

10

15

20

25

30

35

40

45

50

55

60

65

4

third logical block 208 to a sixth intended page 234 at a time
corresponding to a sixth timestamp 222, the sixth intended
page 234 being an upper page corresponding to the third
intended page 228, a corresponding map entry is written to
random access memory in the storage device such that a sixth
data location entry 320 specifies a correlation between the
third logical block address 208 and the sixth intended page
234, and a sixth timestamp 322 that corresponds to the sixth
timestamp 222 of the actual write operation.

In some embodiments, map entries are maintained in a
volatile memory until enough entries are present for batch
writing the map table to a solid-state storage device. In that
case, a power failure during a write operation may result in
corrupted data. Where the write operation is a write operation
directed toward an upper page of a multi-level cell (for
example, the fourth, fifth and sixth intended pages 230, 232,
234) both the upper and lower page is corrupted.

In one exemplary situation, supposing that a table compris-
ing the first data location entry 300, the second data location
entry 304 and the third data location entry 308 has been
written to the NAND data storage device, a subsequent set of
write operations produce additional map table entries that are
only written to RAM and not to the NAND data storage
device. During a write operation corresponding to the sixth
data location entry 320, a power loss occurs. In this case, the
sixth data location entry 320 associates the third logical block
address 208 with the sixth intended page 234, the sixth
intended page 234 being an upper page of the third intended
page 228. It will be known that, because of the process of
writing an upper page, both the third intended page 228 and
the sixth intended page 234 will be unreadable. However,
because the power loss occurred after the first logical block
address 200 was written to the fourth intended page 230 but
before the fourth data location entry 312, associating the first
logical block address 200 with the fourth intended page 230,
was written to the NAND data storage device, the fourth data
location entry 312 is lost and the most recent map entry stored
in non-volatile memory indicates that the first intended page
224 is the actual location of the first logical block address 200.
Such association is outdated and old data will be returned.

Referring to FIG. 4, a block diagram of a data storage
element and map entries useful in at least one embodiment of
the present invention is shown. In at least one embodiment of
the present invention, a multi-level cell data storage element
comprises memory pages organized into a first set of lower
page 400 and a corresponding first set of upper page 404, and
asecond set of lower page 402 and a corresponding second set
of upper pages 406. Each page in the first set of lower pages
400 is associated with a page in the first set of upper pages
404. Likewise, each page in the second set of lower pages 402
is associated with a page in the second set of upper pages 406.
Each set of pages 400, 402, 404, 406 is divided into dies 408,
410, 412, 414, 416, 418, 420, 422.

In one exemplary embodiment, the write sequence for a
solid-state drive according to at least one embodiment of the
present invention begins with the first set of lower pages 400,
starting from the first die 408, then the second die 410, third
die 412, fourth die 414, fifth die 416, sixth die 418, seventh die
420 and eighth die 422. Once the last die 422 of the first set of
lower pages 400 is written, the solid-state drive then starts
writing to the second set of lower pages 402 starting from the
first die 408, then the second die 410, third die 412, fourth die
414, fitth die 416, sixth die 418, seventh die 420 and eighth
die 422. Once the last die 422 of the second set of lower pages
402 is written, the solid-state drive then starts writing to the
first set of upper pages 404 starting from the first die 408, then
the second die 410, third die 412, fourth die 414, fifth die 416,

US 9,208,077 B1

5

sixth die 418, seventh die 420 and eighth die 422. Once the
last die 422 of the first set of upper pages 404 is written, the
solid-state drive then starts writing to the second set of upper
pages 406 starting from the first die 408, then the second die
410, third die 412, fourth die 414, fifth die 416, sixth die 418,
seventh die 420 and eighth die 422.

Eachtime a page is written, a map entry 424, 426, 428, 430,
432,434, 436,438 is written to a volatile memory to associate
a logical block address with a particular page. For example, a
first map entry 424 associates a logical block address with a
first page 440 in the second set of lower pages 402, a second
map entry 426 associates a logical block address with a sec-
ond page 442 in the second set of lower pages 402, a third map
entry 428 associates a logical block address with a third page
444 in the second set of lower pages 402, a fourth map entry
430 associates a logical block address with a fourth page 446
in the second set of lower pages 402, a fifth map entry 432
associates a logical block address with a fifth page 448 in the
second set of lower pages 402, a sixth map entry 434 associ-
ates a logical block address with a sixth page 450 in the
second set of lower pages 402, a seventh map entry 436
associates a logical block address with a seventh page 452 in
the second set of lower pages 402 and an eighth map entry 438
associates a logical block address with an eighth page 454 in
the second set of lower pages 402. In at least one embodiment
of the present invention, modified map entries are flushed
from volatile memory to a location in the NAND data storage
device when certain conditions are satisfied. For example,
when an upper page (a page in the first set of upper pages 404
or the second set of upper pages 406), the correspondent
lower page’s map entry must be flushed to the NAND data
storage. For example, when a write operation attempts to
write data to a third page 456 in the second set of upper pages
406, the third page 456 corresponding to the third page 444 in
the second set of lower pages 402, any map entries in volatile
memory associated with the third page 444 in the second set
of lower pages 402, such as the third map entry 428, will be
flushed. In at least one embodiment of the present invention,
all map entries 424, 426, 428, 430, 432, 434, 436, 438 in
volatile memory associated with the second set of lower
pages 402 will be flushed. In at least one embodiment, all map
entries in volatile memory, regardless of the corresponding
page will be flushed.

In at least one embodiment, before a data storage device
with multi-level cells begins to write data to the first set of
upper pages 404 all map entries corresponding to the first set
of lower pages 400 must be flushed. Likewise, before a data
storage device with multi-level cells begins to write data to
the second set of upper pages 406 all map entries correspond-
ing to the second set of lower pages 402 must be flushed.

Referring to FIG. 5, a flowchart of at least one embodiment
of the present invention is shown. After a power loss, a data
storage device having multi-level cell NAND memory would
restore functionality by searching 500 the host data area and
identifying 502 any corrupted pages. Considering the
example in FIG. 4, where a power loss occurred during a write
operation to the third page 456 in the second set of upper
pages 406, the data storage device would identify 502 the
third page 456 in the second set of upper pages 406 and the
third page 444 in the second set of lower pages 402 as cor-
rupted. Having identified the earliest corrupted page (the third
page 444 of the second set of lower pages 402) the data
storage device finds 504 the timestamp of the die written
immediately before the earliest corrupted page. Using the
present example, the die written immediately before the ear-
liest corrupted die would be the second page 442 of the
second set of lower pages 402. Once the timestamp of the die

10

15

20

25

30

35

40

45

50

55

60

65

6

is found 504, the data storage device begins to search 506 the
map data area to find 508 map entries having substantially the
same timestamp as the die written before the earliest cor-
rupted page. The data storage device then scans 510 all sub-
sequent map entries (map entries having a timestamp greater
than the timestamp of the die written before the earliest cor-
rupted page). For subsequent map entries corresponding to
logical block addresses listed in corrupted pages, a flag is
added 512 to the map entry indicating a corrupted logical
block address. The flag prevents the erroneous reading of old
data.

Referring to FIG. 6, a flowchart of at least one embodiment
of'the present invention is shown. After any corrupted logical
block addresses are flagger, a data storage device according to
at least one embodiment of the present invention again begins
to service data requests. Where a host sends a command to
read a logical block address that has been flagged, the data
storage device searches 600 the map entries for the logical
block address, identifies 602 the corrupt logical block address
flag and returns 604 a corrupted status.

Solid state drives according to at least one embodiment of
the present invention identify corrupted logical block
addresses based on timestamps. Timestamps are valid
because map entries stored in volatile memory are flushed
before a write operation to an upper page would present the
possibility of returning old data.

It is believed that the present invention and many of its
attendant advantages will be understood by the foregoing
description of embodiments of the present invention, and it
will be apparent that various changes may be made in the
form, construction, and arrangement of the components
thereof without departing from the scope and spirit of the
invention or without sacrificing all of its material advantages.
The form herein before described being merely an explana-
tory embodiment thereof; it is the intention of the following
claims to encompass and include such changes.

What is claimed is:

1. A computer apparatus comprising:

a processor;

memory connected to the processor; and

a data storage device comprising multi-level cell NAND,

wherein the processor is configured to:

receive a data write request to write data corresponding
to a logical block address to the data storage device;

determine that one or more map entries corresponding to
one or more lower pages in the data storage device are
currently stored in the memory;

determine that the data will be written to an upper page
corresponding to a lower page in the one or more map
entries;

flush the one or more map entries to the data storage
device;

write the data to one or more pages in the data storage
device; and

write a map entry in the memory associating the one or
more pages with a logical block address.

2. The computer apparatus of claim 1, wherein each of the
one or more map entries comprises a timestamp correspond-
ing to a time when corresponding data was written to the data
storage device.

3. The computer apparatus of claim 1, wherein the proces-
sor is further configured to:

detect a power loss during a write operation;

identify one or more pages corrupted during the write

operation; and

identify a last page written prior to an earliest corrupted

page in the one or more pages.

US 9,208,077 B1

7

4. The computer apparatus of claim 3, wherein the proces-
sor is further configured to:

determine a last timestamp associated with the last page;

and

scan a data structure comprising map entries to identify one

ormore map entries having a substantially similar times-
tamp to the last timestamp.

5. The computer apparatus of claim 4, wherein the proces-
sor is further configured to:

scan the data structure to identify one or more map entries

having a timestamp subsequent to the last timestamp,
and corresponding to a logical block address associated
with at least one of the one or more pages corrupted
during the write operation;

set a flag in the one or more map entries having a timestamp

subsequent to the last timestamp, and corresponding to a
logical block address associated with at least one of the
one or more pages corrupted during the write operation
indicating that all map entries associated with the logical
block address are corrupted.

6. The computer apparatus of claim 5, wherein the proces-
sor is further configured to:

receive a read request for data in the logical block address;

search one or more map entries in the data structure to find

a map entry associated with the logical block address;
and

return a corrupt status upon identifying the flag.

7. The computer apparatus of claim 1, wherein the proces-
sor is further configured to:

receive a read request for data in a logical block address;

search one or more map entries in a data structure of map

entries associating logical block addresses with pages in
the data storage device to find a map entry associated
with the logical block address;

identify a flag indicating that any map entries associated

with the logical block address are corrupted; and
return a corrupt status upon identifying the flag.
8. A method comprising:
receiving a data write request to write data corresponding
to a logical block address to the data storage device;

determining that one or more map entries corresponding to
one or more lower pages in the data storage device are
currently stored in the memory;

determining that the data will be written to an upper page

corresponding to a lower page in the one or more map
entries;

flushing the one or more map entries to the data storage

device;

writing the data to one or more pages in the data storage

device; and

writing a map entry in the memory associating the one or

more pages with a logical block address.

9. The method of claim 8, wherein each of the one or more
map entries comprises a timestamp corresponding to a time
when corresponding data was written to the data storage
device.

10. The method of claim 8, further comprising:

detecting a power loss during a write operation;

identifying one or more pages corrupted during the write

operation; and

identifying a last page written prior to an earliest corrupted

page in the one or more pages.

11. The method of claim 10, further comprising:

determining a last timestamp associated with the last page;

and

10

15

20

25

30

35

40

45

50

55

60

65

8

scanning a data structure comprising map entries to iden-
tify one or more map entries having a substantially simi-
lar timestamp to the last timestamp.

12. The method of claim 11, further comprising:

scanning the data structure to identify one or more map

entries having a timestamp subsequent to the last times-
tamp, and corresponding to a logical block address asso-
ciated with at least one of the one or more pages cor-
rupted during the write operation;

setting a flag in the one or more map entries having a

timestamp subsequent to the last timestamp, and corre-
sponding to a logical block address associated with at
least one of the one or more pages corrupted during the
write operation indicating that all map entries associated
with the logical block address are corrupted.

13. The method of claim 12, further comprising:

receiving a read request for data in the logical block

address;

searching one or more map entries in the data structure to

find a map entry associated with the logical block
address; and

returning a corrupt status upon identifying the flag.

14. A multi-level cell data storage system comprising:

a processor;

memory connected to the processor; and

computer executable program code,

wherein the computer executable program code configures

the processor to:

receive a data write request to write data corresponding
to a logical block address to the data storage device;

determine that one or more map entries corresponding to
one or more lower pages in the data storage device are
currently stored in the memory;

determine that the data will be written to an upper page
corresponding to a lower page in the one or more map
entries;

flush the one or more map entries to the data storage
device;

write the data to one or more pages in the data storage
device; and

write a map entry in the memory associating the one or
more pages with a logical block address.

15. The multi-level cell data storage system of claim 14,
wherein each of the one or more map entries comprises a
timestamp corresponding to a time when corresponding data
was written to the data storage device.

16. The multi-level cell data storage system of claim 14,
wherein the processor is further configured to:

detect a power loss during a write operation;

identify one or more pages corrupted during the write

operation; and

identify a last page written prior to an earliest corrupted

page in the one or more pages.

17. The multi-level cell data storage system of claim 16,
wherein the processor is further configured to:

determine a last timestamp associated with the last page;

and

scan a data structure comprising map entries to identify one

or more map entries having a substantially similar times-
tamp to the last timestamp.

18. The multi-level cell data storage system of claim 17,
wherein the processor is further configured to:

scan the data structure to identify one or more map entries

having a timestamp subsequent to the last timestamp,
and corresponding to a logical block address associated
with at least one of the one or more pages corrupted
during the write operation;

US 9,208,077 B1

9

set a flag in the one or more map entries having a timestamp
subsequent to the last timestamp, and corresponding to a
logical block address associated with at least one of the
one or more pages corrupted during the write operation
indicating that all map entries associated with the logical
block address are corrupted.

19. The multi-level cell data storage system of claim 18,

wherein the processor is further configured to:

receive a read request for data in the logical block address;

search one or more map entries in the data structure to find
a map entry associated with the logical block address;
and

return a corrupt status upon identifying the flag.

20. The multi-level cell data storage system of claim 14,

wherein the processor is further configured to:

receive a read request for data in a logical block address;

search one or more map entries in a data structure of map
entries associating logical block addresses with pages in
the data storage device to find a map entry associated
with the logical block address;

identify a flag indicating that any map entries associated
with the logical block address are corrupted; and

return a corrupt status upon identifying the flag.

#* #* #* #* #*

10

15

20

10

